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Dynamics of a sphere with inhomogeneous slip boundary conditions in Stokes flow

Geoff Willmott™
Industrial Research Limited, 69 Gracefield Road, Lower Hutt, New Zealand
(Received 22 January 2008; published 6 May 2008)

The dynamic resistance of a sphere with a general inhomogeneous slip boundary condition is analyzed in
Newtonian unbounded uniform flow at low Reynolds number. The boundary condition is treated as a pertur-
bation to a homogeneous sphere, assuming that the slip length magnitude b is much smaller than the sphere
radius a. To first order, the effect of inhomogeneous slip is the same as that of a radial deformity of magnitude
b. Full resistance tensors are presented and the dynamics of a hemispherical inhomogeneous sphere, such as a

Janus particle, are explicitly calculated.
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The motion of micro- and nanospheres in fluids is of in-
creasing importance in several emerging fields of research.
Spheres have attracted interest for biomedical applications
such as targeting cancer cells [1,2]. Magnetic microspheres
have frequently been used in recent research [3], while small
particles have the potential to play a significant role in mi-
crofluidic and MEMS technologies. Fabrication of micro-
and nanospheres is widespread, because it is relatively easy
to obtain spherical particles with homogeneous surface
chemistry due to minimization of surface tension. Inhomo-
geneous spherical particles such as dual-hemispherical Janus
particles [4] (including magnetic Janus particles [5]) are also
being fabricated.

Manipulation of small particles in fluids has been
achieved by various means, particularly using electromag-
netic methods, which have been described analytically [6].
Other factors relevant to particle manipulation that are less
well studied include orientation dependence [1], particle in-
homogeneity, and surface slip. Slip occurs when there is non-
zero relative motion between a solid surface and the fluid
immediately adjacent to that surface, violating the nonslip
boundary condition (NSBC). The presence of slip on a par-
ticle surface alters the shear forces on that surface, which are
otherwise very stable at low Reynolds number, thereby intro-
ducing manipulation properties that do not require applica-
tion of external fields. The rotational dynamics are likely to
be of intrinsic importance for inhomogeneous and Janus par-
ticles. In the last 15 years, there has been great interest in
practically achieving surface slip in microfluidic flows [7,8].
Experimental work has shown that, for a Newtonian fluid at
a smooth, hydrophobic surface, nonzero slip does occur and
can be greatly intensified using surfaces engineered on the
microscale [9-13]. Complementary theoretical work has
most frequently used Navier’s formulation of the slip bound-
ary condition [7].

Analysis of spherical and near-spherical particles in fluid
flow at low Reynolds numbers has consistently been of in-
terest over the past two hundred years. Happel and Brenner
[14] produced a summary of relevant analyses, covering the
flows surrounding particles and the resulting dynamics. In
particular, they presented the solution for a sphere with a
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homogeneous slip boundary condition. The problem of a
slightly deformed sphere with a homogeneous slip boundary
condition has since been solved approximately [15,16].

In this Rapid Communication, the dynamic response of an
impermeable spherical particle with a spatially varying, in-
homogeneous slip boundary condition is analyzed in stream-
ing Newtonian flow at low Reynolds number. Slip is formu-
lated as a general function of surface area and applied as a
perturbation to the solution for a homogeneous NSBC
sphere. This approach gives first-order results for the resis-
tance tensor of the particle for any slip boundary condition
and any relative flow direction, providing the slip length
magnitude is much smaller than the sphere’s radius. Results
are calculated for some specific inhomogeneous boundary
conditions, including those relevant for Janus particles.

The equation of motion for steady flow of an incompress-
ible fluid (V-v=0) at low Reynolds number is the Stokes
equation,

7Vv=Vp, (1)

where v is the velocity field for a Newtonian fluid of density
p and viscosity 7, and the pressure term p absorbs any body
forces. Solutions to the Stokes equation are dependent on
flow geometry and boundary conditions. There is a general
methodology for finding v for unbounded uniform flow ex-
ternal to a particle in viscous flow, and the force and torque
on a spherical particle [14]. For inhomogeneous boundary
conditions, it is not practical to analytically find the full so-
lution, which requires several expansions of spherical har-
monic functions.

Navier’s slip boundary condition [7] states that the com-
ponent of fluid velocity tangent to a solid surface (v)) is
proportional to the shear rate at the surface,

vy=bn- (Vv +(Vv)7) - (I-nn). 2)

Here, n is the unit normal to the surface and the equation is
valid in the rest frame of the wall [17]. The parameter b has
units of length and is often referred to as the “slip length.”
For an impermeable, homogeneous surface, Eq. (2) reduces
to vy=by,, where v, is the spatial gradient of v} normal to
the solid surface and b =b if the solid-liquid interface is
assumed to be planar, as has been the case in most recent slip
studies. The derivation of b for a curved surface [17] yields
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where R is the radius of curvature of the interface, defined as
positive for a convex solid surface. Note that ;=0 when b
=0; by=b when b<<R; and if R and b are of comparable
magnitude, b;>b.

In order to describe an inhomogeneous boundary condi-
tion on the surface of a sphere, the slip length bf(0, @) is
used, where 6 and ¢ are spherical polar coordinates and
(6, ¢) is a function of O(1). When b is small compared with
sphere radius a, a perturbed flow around the sphere can be

expanded in powers of €=—(by/a), where |€| <1 and there-
fore by=b:

v=vO+evll 4 EvPD 4 - (4)
The inhomogeneous version of the flat-surface slip boundary

condition [Eq. (2)] is

V=—eaf(0,¢)%, (5)

where f(6, ¢) can be expanded in terms of surface spherical
harmonics f(6, ¢), such that f(60, $)=27_ (6, ). Compar-
ing Eqgs. (4) and (5), the first two terms in the expansion of v
give the boundary conditions

vO(r=a,0, $) =0,

(0)
VOr=a,6.6)=- af(6,9)

r

(6)

For incident unbounded uniform flow characterized by the
velocity vector U, the boundary conditions far from the
sphere are

vO(r=,0,¢)=U,

v\(r==,0,¢)=0. (7)

The solution for the zeroth-order field v is the usual solu-
tion for a homogeneous sphere,

3a(1 rr\ &(1 _rr
V(°>=U'[‘-z<;+ﬁ>‘z(ﬁ-3ﬁ>]' ®

The corresponding pressure, drag, and torque are similarly
well known. To find v("), a spherical harmonic expansion is
used,

v=3 v, ©)
k=0

where each v,(cl) (k=0,1,2,...) satisfies Stokes’ equations
and [from Egs. (6)—(8)] the boundary conditions

3
vil(r=a,6,¢) =~ SU- (I— %)fk(@qﬁ),
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v (r=,6,¢)=0. (10)

The requirement that v,(r=a,6,$)=0 was not explicitly
stated when determining the boundary conditions, but is met
by Egs. (7) and (10).

For a full description of the spherical harmonic formula-
tion of v(!) and the relating dynamics, the reader is referred
to the analogous treatment of a slightly deformed sphere
given by Happel and Brenner [14], in which the sphere’s
surface takes the locus of points

r=all +ef(6,¢)]. (11)

When this surface is treated as a perturbation to a sphere
under the NSBC, the formulation is coincident with the first-
order problem defined by Egs. (1), (6), and (7), with e being
replaced by e. To first order in e, the force and torque on the
inhomogeneous slip sphere are

F=F%+ &+ 0(&)
b 1
=6mnaU - ~6mya| Uf, - E(U V)V (Pf) | +0(),
a

(12)

b
T=TO + €TV + 0(&) =0 + —677a*U X V(rf;) + O().
a

(13)

The dynamics for a rotating, slightly deformed sphere can
be calculated following a similar method, once the boundary
conditions are carefully checked. Again the perturbation of
the velocity field [Eq. (4)] is used, where |e| < 1. The inho-
mogeneous slip boundary condition is

av
v=w Xr-eaf(0,¢)—. (14)
ar
Comparing Egs. (4) and (14), the boundary conditions at the
sphere’s surface are
vO(@r=a,0, P)=wXr,

(0)
V(')(r=a,0,¢)=—af(0,¢)%. (15)

The boundary conditions at r=o are v(?=v()=0. These
boundary conditions are also analogous to the spherical har-
monic treatment of a slightly deformed sphere [14]. Con-
versely to the case for translational motion, only odd har-
monics generate a force on the rotating particle, while only
even harmonics generate torque. To first order in €,

F=0+<%)67T77a2w><V(rf1)+0(62), (16)

T=-8mpiw+ (%)247777613|:wa— %(w V)V (rf5)
+0(é). (17)

Stokes’ equations and the boundary conditions are linear,
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FIG. 1. (a) defines Cartesian (x,y,z) and spherical polar (r, 8, ¢)
coordinate axes. The center of the solid sphere of radius a consid-
ered in the analyses is located at the origin. (b) shows a specific
inhomogeneous slip configuration [Eq. (22)].

so solutions for translation and rotation can be superposed to
give the full resistance tensors [15],

F® 6mna®?  6mwypa*DV U
U 6mna*CY 8mna’QY o/ (18)

The first-order tensors about the center of an inhomoge-
neous, slipping sphere are

1
(Dt(lil) = 6fo - Evivj("zfz), (19)
CE/‘I)=DE})=_8ijka(”f1), (20)
1
Ql(}) ==3] 8fo - I_OViVj(”zfz) , (21)

where §; is the Kronecker delta, €, is the Levi-Civita per-
mutation symbol, and tensor components are given in a Car-
tesian frame.

As noted above, the flow field and resulting dynamics for
a slip length b are dynamically equivalent to surface defor-
mation —ea for a sphere in viscous flow when €<1 and e
< 1. The mathematical equivalence of these approaches does
not mean that they describe physically similar phenomena.
The boundary conditions are coincident to first order, but not
to second order, because the slip boundary conditions for v*)
and higher-order terms do not contain second and higher
derivatives of the flow profile. When higher-order terms are
considered, the difference between b and b, becomes impor-
tant. Another physical difference is that surface deformation
is independent of strain rate, whereas the rate dependence of
b [and, therefore, the linearity of Eq. (2)] is an unresolved
topic of active research [7].

For an explicit calculation, consider the specific inhomo-
geneous boundary conditions given by

vy (0<6<¥)

f6.9=1, 0 <0<,

(22)
which are shown schematically in Fig. 1, along with the
Cartesian (x,y,z) and spherical polar (r,#,¢) coordinate
axes. To describe this boundary condition, an expansion of
normalized Legendre polynomials P,(cos 6) is used,
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FIG. 2. A section through the center of a sphere in unbounded
uniform flow parallel to the positive x direction. Arrows are propor-
tional to ev!"), the first-order correction to the fluid velocity vector.
The hemispherical boundary condition described in the text is used,
with y=0.25. The y component of fluid velocity is zero on the plane
of this section. The flow field was calculated using spherical har-
monics for the equivalent deformed sphere in Ref. [14].

f0.d)=fo+fi+fr+

1
= 5[1 +cos 0" + y(1 —cos §')]Py(cos 6)
3 2
+ Z(COS 6 —1)(1 - y)P(cos 6)

5
+ Z(COS3 6 —cos 0')(1 = y)Py(cos 6) + -+ .

(23)

For the hemispherical boundary condition relevant to Janus
particles (6'=90°), using Egs. (12), (13), and (23),

by(1
F= 67777aU<1 - bd+y) y))’ (24)
2a
b 3
T = - 6mna*—(1 - y)U X V(Zrcos 0). (25)
a

The rotational motion reaches equilibrium when the vector
V(rf,) is parallel to U. In Cartesian coordinates, the torque
about the center of the sphere reflects the symmetry of the
boundary condition about the z axis:

9 b A A
T=-_mpa’— (1 - NUK-UJ).

2 a (26)

Equation (26) is consistent with the first-order velocity field
plotted in Fig. 2, in which there is greater fluid velocity and
therefore smaller viscous force at the surface with more slip.

The dynamic response of a slipping sphere provides a
mechanism for manipulation of that sphere when there is
fluid motion relative to the particle. The sphere is lubricated,
while asymmetry of the boundary condition relative to the
flow direction allows manipulation of orientation. Such dy-
namics are important, for example, when the particle is teth-
ered stationary relative to flow (but free to rotate), or com-
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peting with other applied forces. Application of external
fields is not required. The effect of slip increases with (b/a),
and it is important to recognize that the slip length is not in
principle restricted by particle size. Practical manipulation of
spheres using asymmetric slip will be dependent on control-
ling the shape of the particle and the method of inducing slip.
Superhydrophobic surfaces generally have physical structure
of O(1) um while providing Newtonian slip lengths up to
O(10) wm, while slip lengths for water on smooth, hydro-
phobic surfaces are of O(10) nm. Development of reliable
experimental methods for slip length measurement is an area
of active research [8]. The major methods currently used do
not incorporate significant surface curvature, nor do they pre-
cisely test the linearity of Navier’s slip length. The calcula-
tions described here provide a method for measuring b.

The influence of thermal motion on orientation effects can
be estimated by considering the Peclet number for the rotat-
ing sphere. The mechanical energy scale is the work done by
flow parallel to the x axis (U,) when rotating an inhomoge-
neous slip boundary condition (y=1) sphere 90° about the y
axis, so that the Peclet number is

_ 9mmab U,
T 2kgT

Pe s (27)

where T is temperature and kp is Boltzmann’s constant. Fig-
ure 3 is an indicative plot of the conditions at which thermal
motion becomes significant (Pe= 1) for water at room tem-
perature.

To summarize, first-order solutions for low-Reynolds
number sphere dynamics that are general with respect to

boundary condition inhomogeneity and the relative orienta-
tion of unbounded uniform flow have been derived. The full
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FIG. 3. Plots of the locus of points at which Pe=1 [Eq. (27)].
For each line, thermal motion is significant at points closer to the x
axis. The fluid is assumed to be water at 300 K.

resistance tensors, inclusive of rotational motion, have been
presented. The slip perturbation is mathematically equivalent
to a slightly deformed sphere, but the governing physical
processes for these situations are significantly different. The
calculations could be applied to applications utilizing inho-
mogeneous slip. They are just as likely to be useful for char-
acterizing the intrinsic properties of particles that are already
in use. The analysis will be useful for those interested in slip
length measurement, especially for smooth surfaces. Thermal
fluctuations will play a significant limiting role in the useful-
ness of slip-based orientation techniques, especially in atmo-
spheric conditions on the nanoscale.
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